
ProgPrompt: Generating Situated Robot Task Plans using Large Language Models
Ishika Singh, Valts Blukis, Arsalan Mousavian, Ankit Goyal, Danfei Xu, Jonathan Tremblay,

Dieter Fox, Jesse Thomason, Animesh Garg

Planning with LLMs

KEY TAKEAWAY

We present a programmatic LLM
prompt structure that enables plan
generation functional across situated
environments, robot capabilities,
and tasks.

LLM is not situated in the scene

Text-to-robot action mapping may
not be trivial

Plan steps using unavailable
actions and objects

Combinatorial admissible action
space

Plan:
1. Find the salmon
2. Place the salmon on the plate
3. Put the plate in the micrwave
4. Set the timer for the desured

amout of time
5. Wait for the timer to go off
6. Remove the plate from the

microwave
7. Enjoy your delicious salmon

LLM [GPT-3]

Generated Plan

Task: make coffee
Plan:
1. Go to kitchen
2. find mug
3. grab mug
4. find coffee machine
5. put mug in coffee machine
6. turn on coffee machine
7. switch off coffee machine
8. grab mug
9. find table
10. put mug on the table
11. Done

Task: microwave salmon

Prompt

def microwave_salmon():
 # 0: walk to kitchen
 walk('kitchen')
 # 1: find microwave
 find('microwave')
 # 2: open microwave
 assert('close' to 'microwave')
 else: find('microwave')
 assert('microwave' is 'closed')
 else: close('microwave')
 open('microwave')
 ...
 # 5: put salmon in microwave
 assert('salmon' in 'hands')
 else: find('salmon')
 else: grab('salmon')
 assert('close' to 'microwave')
 else: find('microwave')
 assert('microwave' is 'opened')
 else: open('microwave')
 putin('salmon', 'microwave')
 ...
 close('microwave')
 ...
 switchon('microwave')
 # 8: wait for salmon to be done

 cooking 1-2 minutes
 # 9: turn off microwave
 ...
 switchoff('microwave')
 ...
 open('microwave')
 ...
 grab('salmon')
 # 12: put salmon on plate
 assert('salmon' in 'hands')
 ...
 assert('close' to 'plate')
 else: find('plate')
 putin('salmon', 'plate')
 ...
 close('microwave')
 # 14: Done

Generated Plan

Comment -
Action(s)
Mapping

from actions import walk <obj>,
grab <obj>, switchon <obj>,
open <obj>, standup, find
<obj>, putin <obj> <obj>, ...

def microwave_salmon():

Comment:
Summary

Else:
Recovery
Actions

Assertions:
State
Feedback

Action API
+ object(s):
Plan Step

objects=[clothesshirt’ sink,
pie, apple, fridge, garbagecan,
tv, dishwashingliquid, bed,
bookshelf, salmon, stove, plate,
coffeepot, kitchentable,
wineglass, paper, microwave,
toothbrush, toothpaste,
bathroomcabinet, kitchen, lime,
painkillers, barsoap, ...]

Optional
Steps

PROMPT for Planning

LLM [GPT-3]

Import action primitives

Available objects list

Next task prompt

def throw_away_lime():
 # 0: find lime
 find('lime')
 ...
 # 5: close garbagecan
 assert('close' to 'garbagecan')
 else: find('garbagecan')
 assert('garbagecan' is 'opened')
 else: open('garbagecan')
 close('garbagecan')
 ...
 # 6: Done

Example task(s)
def microwave_salmon():
 ...
 # 5: put salmon in microwave
 ...
 assert('microwave' is 'opened')
 else: open('microwave')
 putin('salmon', 'microwave')
 ...

You see: "fridge is CLOSED,
lightswitch is ON, cereal,
bookshelf, box INSIDE bookshelf,
cereal ON wallshelf, paper
INSIDE bookshelf..."
You have: "book"

assert('close' to 'mug')
False
assert('book' in 'hands')
True
assert('cereal' on 'bookshelf')
False
...

Env [VH]

True False
Correct Prediction

LLM [GPT-3]
PROMPT for State Feedback

Example assertion check(s)

Current Semantic State
Salmon

Microwave

You see: "microwave is OPEN and
OFF, microwave ON
kitchencounter."
You have: "salmon."

assert(‘microwave' is 'opened')

TABLE I: Evaluation of generated programs on Virtual Home. PROGPROMPT uses 3 fixed example programs, except the DAVINCI backbone which can fit
only 2 in the available API. [2] use 1 dynamically selected example, as described in their paper. LANGPROMPT uses 3 natural language text examples. Best
performing model with a GPT3 backbone is shown in blue (used for our ablation studies); best performing model overall shown in bold. PROGPROMPT
significantly outperforms the baseline [2] and LANGPROMPT. We also showcase how each PROGPROMPT feature adds to the performance of the method.

— Prompt Format and Parameters —
Format COMMENTS FEEDBACK LLM Backbone SR Exec GCR

1 PROGPROMPT 3 3 CODEX 0.400.400.40±0.11 0.900.900.90±0.05 0.720.720.72±0.09
2 PROGPROMPT 3 3 DAVINCI 0.22±0.04 0.60±0.04 0.46±0.04
3 PROGPROMPT 3 3 GPT3 0.34±0.08 0.84±0.01 0.65±0.05
4 PROGPROMPT 3 7 GPT3 0.28±0.04 0.82±0.01 0.56±0.02
5 PROGPROMPT 7 3 GPT3 0.30±0.00 0.65±0.01 0.58±0.02
6 PROGPROMPT 7 7 GPT3 0.18±0.04 0.68±0.01 0.42±0.02
7 LANGPROMPT - - GPT3 0.00±0.00 0.36±0.00 0.42±0.02
8 Baseline from HUANG ET AL. [2] GPT3 0.00±0.00 0.45±0.03 0.21±0.03

virtual agent or a physical robot system using an interpreter
that executes each action command against the environment.
Assertion checking is done in a closed-loop manner during
execution, providing current environment state feedback.

IV. EXPERIMENTS

We evaluate our method with experiments in a virtual
household environment and on a physical robot manipulator.

A. Simulation Experiments
We evaluate our method in the Virtual Home (VH) Envi-

ronment [8], a deterministic simulation platform for typical
household activities. A VH state s is a set of objects O and
properties P . P encodes information like in(salmon, mi-

crowave) and agent close to(salmon). The action space
is A = {grab, putin, putback, walk, find, open,

close, switchon, switchoff, sit, standup}.
We experiment with 3 VH environments. Each environ-

ment contains 115 unique object instances (Fig. 2), including
class-level duplicates. Each object has properties correspond-
ing to its action affordances. Some objects also have a seman-
tic state like heated, washed, or used. For example, an
object in the Food category can become heated whenever
in(object,microwave) ^ switched on(microwave).

We create a dataset of 70 household tasks. Tasks are posed
with high-level instructions like “microwave salmon”. We
collect a ground-truth sequence of actions that completes the
task from an initial state, and record the final state g that
defines a set of symbolic goal conditions, g 2 P .

When executing generated programs, we incorporate en-
vironment state feedback in response to asserts. VH
provides observations in the form of state graph with object
properties and relations. To check assertions in this environ-
ment, we extract information about the relevant object from
the state graph and prompt the LLM to return whether the
assertion holds or not given the state graph and assertion as
a text prompt (Fig. 2 Prompt for State Feedback).

B. Real-Robot Experiments
We use a Franka-Emika Panda robot with a parallel-jaw

gripper. We assume access to a pick-and-place policy. The
policy takes as input two pointclouds of a target object and a
target container, and performs a pick-and-place operation to

place the object on or inside the container. We use the system
of [37] to implement the policy, and use MPPI for motion
generation, SceneCollisionNet [37] to avoid collisions, and
generate grasp poses with Contact-GraspNet [38].

We specify a single import statement for the action
grab and putin(obj1, obj2) for PROGPROMPT. We
use ViLD [39], an open-vocabulary object detection model,
to identify and segment objects in the scene and construct
the available object list for the prompt. Unlike in the virtual
environment, where object list was a global variable in
common for all tasks, here the object list is a local variable
for each plan function, which allows greater flexibility to
adapt to new objects. The LLM outputs a plan containing
function calls of form grab and putin(obj1, obj2).
Here, objects obj1 and obj2 are text strings that we map to
pointclouds using ViLD segmentation masks and the depth
image. Due to real world uncertainty, we do not implement
assert-based closed loop options on the tabletop plans.

C. Evaluation Metrics
We use three metrics to evaluate system performance: suc-

cess rate (SR), goal conditions recall (GCR), and executabil-
ity (Exec). The task-relevant goal-conditions are the set of
goal-conditions that changed between the initial and final
state in the demonstration. SR is the fraction of executions
that achieved all task-relevant goal-conditions. Exec is the
fraction of actions in the plan that are executable in the
environment, even if they are not relevant for the task. GCR

is measured using the set difference between ground truth
final state conditions g and the final state achieved g0 with
the generated plan, divided by the number of task-specific
goal-conditions; SR= 1 only if GCR= 1.

V. RESULTS

PROGPROMPT successfully prompts LLM-based task
planners to both virtual and physical agent tasks.

A. Virtual Experiment Results
Tab. I summarizes the performance of our task plan

generation and execution system in the seen environment
of VirtualHome. We utilize a GPT3 as a language model
backbone to receive PROGPROMPT prompts and generate
plans. Each result is averaged over 5 runs in a single VH

Method:
Demo in
Virtual
Home

Results grab_and_puton('banana', 'plate') grab_and_puton('strawberry', 'plate') grab_and_putin('bottle', 'box')

Task: sort fruits on the plate and bottles in the box

Fig. 4: Robot plan execution rollout example on the sorting task showing relevant objects banana, strawberry, bottle, plate and box, and a distractor object
drill. The LLM recognizes that banana and strawberry are fruits, and generates plan steps to place them on the plate, while placing the bottle in the box.
The LLM ignores the distractor object drill. See Figure 1 for the prompt structure used.

• Environment complexities: when an object is not acces-
sible, the generated assertions might not be enough. For
example, if the agent finds an object in a cabinet, it may
not plan to open the cabinet to grab the object.

• Action success feedback is not provided to the agent,
which may lead to failure of the subsequent actions.
Assertion recovery modules in the plan can help, but
aren’t generated to cover all possibilities.

• Incomplete generation: Some plans are cut short by
LLM API caps. One possibility is to query the LLM
again with the prompt and partially generated plan.

In addition to these failure modes, our strict final state
checking means if the agent completes the task and some,
we may infer failure, because the environment goal state will
not match our precomputed ground truth final goal state.
For example, after making coffee, the agent may take the
coffeepot to another table. Similarly, some task descriptions
are ambiguous and have multiple plausible correct programs.
For example, “make dinner” can have multiple possible
solutions. PROGPROMPT generates plans that cooks salmon

using the fryingpan and stove, and sometimes the agent adds
bellpepper or lime, or sometimes with a side of fruit, or
served in a plate with cutlery. When run in a different VH
environment, the agent cooks chicken instead. PROGPROMPT
is able to generate plans for such complex tasks as well while
using the objects available in the scene and not explicitly
mentioned in the task. However, automated evaluation of
such tasks requires enumerating all valid and invalid pos-
sibilities or introducing human verification.

C. Physical Robot Results
The physical robot results are shown in Tab. IV. We

evaluate on 4 tasks of increasing difficulty listed in Tab. IV.
For each task we perform two experiments: one in a scene
that only contains the necessary objects, and with one to
three distractor objects added.

All results shown use PROGPROMPT with comments,
but not feedback. Our physical robot setup did not allow
reliably tracking system state and checking assertions,
and is prone to random failures due to things like grasps
slipping. The real world introduces randomness that compli-
cates a quantitative comparison between systems. Therefore,
we intend the physical results to serve as a qualitative
demonstration of the ease with which our prompting ap-
proach allows constraining and grounding LLM-generated

plans to a physical robot system. We report an additional
metric Plan SR, which refers to whether the plan would
have likely succeeded, provided successful pick-and-place
execution without gripper failures.

Across tasks, with and without distractor objects, the
system almost always succeeds, failing only on the sort

task. The run without distractors failed due to a random
gripper failure. The run with 2 distractors failed because the
model mistakenly considered a soup can to be a bottle. The
executability for the generated plans was always Exec=1.

TABLE IV: Results on the physical robot by task type.

Task Description Distractors SR Plan SR GCR

put the banana in the bowl
0 1 1 1/1
4 1 1 1/1

put the pear on the plate
0 1 1 1/1
4 1 1 1/1

put the banana on the plate 0 1 1 2/2
and the pear in the bowl 3 1 1 2/2

sort the fruits on the plate 0 0 1 2/3
and the bottles in the box 1 1 1 3/3

2 0 0 2/3

VI. CONCLUSIONS AND FUTURE WORK

We present an LLM prompting scheme for robot task
planning that brings together the two strengths of LLMs:
commonsense reasoning and code understanding. We con-
struct prompts that include situated understanding of the
world and robot capabilities, enabling LLMs to directly gen-
erate executable plans as programs. Our experiments show
that PROGPROMPT programming language features improve
task performance across a range of metrics. Our method is
intuitive and flexible, and generalizes widely to new scenes,
agents and tasks, including a real-robot deployment.

As a community, we are only scratching the surface of
task planning as robot plan generation and completion. We
hope to study broader use of programming language features,
including real-valued numbers to represent measurements,
nested dictionaries to represent scene graphs, and more com-
plex control flow. Several works from the NLP community
show that LLMs can do arithmetic and understand numbers,
yet their capabilities for complex robot behavior generation
are still relatively under-explored.

PROGPROMPT: Generating Situated Robot Task Plans
using Large Language Models

Ishika Singh1, Valts Blukis2, Arsalan Mousavian2, Ankit Goyal2, Danfei Xu2,
Jonathan Tremblay2, Dieter Fox2, Jesse Thomason1, Animesh Garg2

Abstract— Task planning can require defining myriad do-
main knowledge about the world in which a robot needs to act.
To ameliorate that effort, large language models (LLMs) can be
used to score potential next actions during task planning, and
even generate action sequences directly, given an instruction
in natural language with no additional domain information.
However, such methods either require enumerating all possible
next steps for scoring, or generate free-form text that may
contain actions not possible on a given robot in its current
context. We present a programmatic LLM prompt structure
that enables plan generation functional across situated envi-
ronments, robot capabilities, and tasks. Our key insight is
to prompt the LLM with program-like specifications of the
available actions and objects in an environment, as well as with
example programs that can be executed. We make concrete
recommendations about prompt structure and generation con-
straints through ablation experiments, demonstrate state of the
art success rates in VirtualHome household tasks, and deploy
our method on a physical robot arm for tabletop tasks. Website
at progprompt.github.io

I. INTRODUCTION

Everyday household tasks require both commonsense un-
derstanding of the world and situated knowledge about the
current environment. To create a task plan for “Make dinner,”
an agent needs common sense: object affordances, such as
that the stove and microwave can be used for heating; logical

sequences of actions, such as an oven must be preheated be-
fore food is added; and task relevance of objects and actions,
such as heating and food are actions related to “dinner” in the
first place. However, this reasoning is infeasible without state

feedback. The agent needs to know what food is available in

the current environment, such as whether the freezer contains
fish or the fridge contains chicken.

Autoregressive large language models (LLMs) trained on
large corpora to generate text sequences conditioned on
input prompts have remarkable multi-task generalization.
This ability has recently been leveraged to generate plausible
action plans in context of robotic task planning [1], [2],
[3], [4] by either scoring next steps or generating new steps
directly. In scoring mode, the LLM evaluates an enumeration
of actions and their arguments from the space of what’s
possible. For instance, given a goal to “Make dinner” with
first action being “open the fridge”, the LLM could score
a list of possible actions: “pick up the chicken”, “pick up
the soda”, “close the fridge”, . . . , “turn on the lightswitch.”
In text-generation mode, the LLM can produce the next few

Correspondence to: ishikasi@usc.edu
This work was done while IS was an intern at NVIDIA
1University of Southern California, 2NVIDIA

Strawberry

Plate

1: put banana on plate
grab_and_puton('banana', 'plate')
2: put strawberry on plate
grab_and_puton('strawberry', 'plate')

LLM [GPT-3]
Generated Plan

from actions import grab_and_putin <obj><obj>,
grab_and_puton <obj><obj>, switchon <obj>,
switchoff <obj>, open <obj>, ...

def throw_away_banana():
 objects = ['banana', 'garbage can',...]
 # 1: put banana in garbage can
 grab_and_putin('banana', 'garbagecan')
 # 2: Done

def put_fork_and_spoon_on_the_box():
 objects = ['fork', 'spoon', 'knife',]
 ...

def put_fork_on_plate_and_spoon_in_box():
 ...

def sort_fruits_on_plate_and_bottles_in_box():
 objects = ['banana', 'bottle', 'box',
 'plate', ‘table', 'drill', 'strawberry']

Prompt

3: put bottle in box
grab_and_putin('bottle', 'box')
4: Done

Fig. 1: PROGPROMPT leverages LLMs’ strengths in both world knowledge
and programming language understanding to generate situated task plans
that can be directly executed.

words, which then need to be mapped to actions and world
objects available to the agent. For example, if the LLM
produced “reach in and pick up the jar of pickles,” that
string would have to neatly map to an executable action like
“pick up jar.” A key component missing in LLM-based task
planning is state feedback from the environment. The fridge
in the house might not contain chicken, soda, or pickles,
but a high-level instruction “Make dinner” doesn’t give us
that world state information. Our work introduces situated-
awareness in LLM-based robot task planning.

We introduce PROGPROMPT, a prompting scheme that
goes beyond conditioning LLMs in natural language. PROG-
PROMPT utilizes programming language structures, lever-
aging the fact that LLMs are trained on vast web cor-
pora that includes many programming tutorials and code
documentation (Fig. 1). PROGPROMPT provides an LLM a
Pythonic program header that imports available actions and
their expected parameters, shows a list of environment
objects, and then defines functions like make dinner

whose bodies are sequences of actions operating on objects.
We incorporate situated state feedback from the environment
by asserting preconditions of our plan, such as being
close to the fridge before attempting to open it, and re-
sponding to failed assertions with recovery actions. What’s
more, we show that including natural language comments in
PROGPROMPT programs to explain the goal of the upcoming
action improves task success of generated plan programs.

environment across 10 tasks. The variability in performance
across runs arises from sampling LLM output. We include
3 Pythonic task plan examples per prompt after evaluating
performance on VH for between 1 prompt and 7 prompts
and finding that 2 or more prompts result in roughly equal
performance for GPT3. The plan examples are fixed to be:
“put the wine glass in the kitchen cabinet”, “throw away the

lime”, and “wash mug”.
We can draw several conclusions from Tab. I. First,

PROGPROMPT (rows 3-6) outperforms prior work [2] (row
8) by a substantial margin on all metrics using the same
large language model backbone. Second, we observe that the
CODEX [28] and DAVINCI models [27]—themselves GPT3
variants—show mixed success at the task. In particular,
DAVINCI does not match base GPT3 performance (row 2
versus row 3), possibly because its prompt length constraints
limit it to 2 task examples versus the 3 available to other
rows. Additionally, CODEX exceeds GPT3 performance on
every metric (row 1 versus row 3), likely because CODEX is
explicitly trained on programming language data. However,
CODEX has limited access in terms of number of queries
per minute, so we continue to use GPT3 as our main
LLM backbone in the following ablation experiments. Our
recommendation to the community is to utilize a program-
like prompt for LLM-based task planning and execution, for
which base GPT3 works well, and we note that an LLM
fine-tuned further on programming language data, such as
CODEX, can do even better.

We explore several ablations of PROGPROMPT. First, we
find that FEEDBACK mechanisms in the example programs,
namely the assertions and recovery actions, improve per-
formance (rows 3 versus 4 and 5 versus 6) across metrics,
the sole exception being that Exec improves a bit without
FEEDBACK when there are no COMMENTS in the prompt ex-
ample code. Second, we observe that removing COMMENTS
from the prompt code substantially reduces performance on
all metrics (rows 3 versus 5 and 4 versus 6), highlighting
the usefulness of the natural language guidance within the
programming language structure.

We also evaluate LANGPROMPT, an alternative to PROG-
PROMPT that builds prompts from natural language text
description of objects available and example task plans (row
7). LANGPROMPT is similar to the prompts built by [2]. The
outputs of LANGPROMPT are generated action sequences,
rather than our proposed, program-like structures. Thus, we
finetune GPT2 to learn a policy P (at|st,GPT3 step,a1:t�1)
to map those generated sequences to executable actions in the
simulation environment. We use the 35 tasks in the training
set, and annotate the text steps and the corresponding action
sequence to get 400 data points for training and validation
of this policy. We find that while this method achieves
reasonable partial success through GCR, it does not match
[2] for program executability Exec and does not generate any
fully successful task executions.
Task-by-Task Performance PROGPROMPT performance for
each task in the test set is shown in Table II. We observe
that tasks that are similar to prompt examples, such as throw

TABLE II: PROGPROMPT performance on the VH test-time tasks and their
ground truth actions sequence lengths |A|.

Task Desc |A| SR Exec GCR

watch tv 3 0.20±0.40 0.42±0.13 0.63±0.28
turn off light 3 0.40±0.49 1.00±0.00 0.65±0.30
brush teeth 8 0.80±0.40 0.74±0.09 0.87±0.26
throw away apple 8 1.00±0.00 1.00±0.00 1.00±0.00
make toast 8 0.00±0.00 1.00±0.00 0.54±0.33
eat chips on the sofa 5 0.00±0.00 0.40±0.00 0.53±0.09
put salmon in the fridge 8 1.00±0.00 1.00±0.00 1.00±0.00
wash the plate 18 0.00±0.00 0.97±0.04 0.48±0.11
bring coffeepot and cupcake

to the coffee table

8 0.00±0.00 1.00±0.00 0.52±0.14

microwave salmon 11 0.00±0.00 0.76±0.13 0.24±0.09

Avg: 0  |A|  5 0.20±0.40 0.61±0.29 0.60±0.25
Avg: 6  |A|  10 0.60±0.50 0.95±0.11 0.79±0.29
Avg: 11  |A|  18 0.00±0.00 0.87±0.14 0.36±0.16

away apple versus wash the plate have higher GCR since
the ground truth prompt examples hint about good stopping
points. Even with high Exec, some task GCR are low, because
some tasks have multiple appropriate goal states, but we
only evaluate against a single “true” goal. For example,
after microwaving and plating salmon, the agent may put
the salmon on a table or a countertop.

TABLE III: PROGPROMPT results on Virtual Home in additional scenes.
We evaluate on 10 tasks each in two additional VH scenes beyond scene
ENV-0 where other reported results take place.

VH Scene SR Exec GCR

ENV-0 0.34±0.08 0.84±0.01 0.65±0.05
ENV-1 0.56±0.08 0.85±0.02 0.81±0.07
ENV-2 0.56±0.05 0.85±0.03 0.72±0.09

Average 0.48±0.13 0.85±0.02 0.73±0.10

Other Environments We evaluate PROGPROMPT in two
additional VH environments (Tab. III). For each, we append
a new object list representing the new environment after the
example tasks in the prompt, followed by the task to be
completed in the new scene. The action primitives and other
PROGPROMPT settings remain unchanged. We evaluate on
10 tasks with 5 runs each. For new tasks like wash the

cutlery in dishwasher, PROGPROMPT is able to infer that
cutlery refers to spoons and forks in the new scenes, despite
that cutlery always refers to knives in example prompts.

B. Qualitative Analysis and Limitations
We manually inspect generated programs and their exe-

cution traces from PROGPROMPT and characterize common
failure modes. Many failures stem from the decision to make
PROGPROMPT agnostic to the deployed environment and
its peculiarities, which may be resolved through explicitly
communicating, for example, object affordances of the target
environment as part of the PROGPROMPT prompt.

• Environment artifacts: the VH agent cannot find or
interact with objects nearby when sitting, and some
common sense actions for objects, such as opening a
tvstand’s cabinets, are not available in VH.

VirtualHome Simulator Real-Robot Arm

progprompt.github.io

LLM situated in the
scene

(1:[0,n]) text-robot
action mapping
Plans restricted to
available actions and
objects

Use LLM’s
commonsense to
compose action
to handle combinatorial
action space

Generalizes to new
tasks, scenes, and
robots

Classical Task Planning
Requires myriad domain knowledge

Domain specific
Large search space, hard to scale

Requires concrete goal specification

ProgPrompt: VirtualHome Demo
def microwave_salmon():
 # 0: walk to kitchen
 walk('kitchen')
 # 1: find microwave
 find('microwave')
 # 2: open microwave
 assert('close' to 'microwave')
 else: find('microwave')
 assert('microwave' is 'closed')
 else: close('microwave')
 open('microwave')
 ...
 # 5: put salmon in microwave
 assert('salmon' in 'hands')
 else: find('salmon')
 else: grab('salmon')
 assert('close' to 'microwave')
 else: find('microwave')
 assert('microwave' is 'opened')
 else: open('microwave')
 putin('salmon', 'microwave')
 ...
 close('microwave')
 ...
 switchon('microwave')
 # 8: wait for salmon to be done

 cooking 1-2 minutes
 # 9: turn off microwave
 ...
 switchoff('microwave')
 ...
 open('microwave')
 ...
 grab('salmon')
 # 12: put salmon on plate
 assert('salmon' in 'hands')
 ...
 assert('close' to 'plate')
 else: find('plate')
 putin('salmon', 'plate')
 ...
 close('microwave')
 # 14: Done

Full Execution

Generated Plan

Comment -
Action(s)
Mapping

from actions import walk <obj>,
grab <obj>, switchon <obj>,
open <obj>, standup, find
<obj>, putin <obj> <obj>, ...

def microwave_salmon():
 ...
 # 5: put salmon in microwave
 ...
 assert('microwave' is 'opened')
 else: open('microwave')
 putin('salmon', 'microwave')
 ...

You see: "fridge is CLOSED,
lightswitch is ON, cereal,
bookshelf, box INSIDE bookshelf,
cereal ON wallshelf, paper
INSIDE bookshelf..."
You have: "book"

assert('close' to 'mug')
False
assert('book' in 'hands')
True
assert('cereal' on 'bookshelf')
False
...

def microwave_salmon():

Env [VH]

True False
Correct Prediction

Comment:
Summary

Else:
Recovery
Actions

Assertions:
State
Feedback

Action API
+ object(s):
Plan Step

objects=[clothesshirt, sink,
pie, apple, fridge, garbagecan,
tv, dishwashingliquid, bed,
bookshelf, salmon, stove, plate,
coffeepot, kitchentable,
wineglass, paper, microwave,
toothbrush, toothpaste,
bathroomcabinet, kitchen, lime,
painkillers, barsoap, ...]

LLM [GPT-3]

Optional
Steps

PROMPT for Planning PROMPT for State Feedback

LLM [GPT-3]

Import action primitives

Available objects list

Next task prompt

Example assertion check(s)

Current Semantic State
Salmon

Microwave

def throw_away_lime():
 # 0: find lime
 find('lime')
 ...
 # 5: close garbagecan
 assert('close' to 'garbagecan')
 else: find('garbagecan')
 assert('garbagecan' is 'opened')
 else: open('garbagecan')
 close('garbagecan')
 ...
 # 6: Done

Example task(s) You see: "microwave is OPEN and
OFF, microwave ON
kitchencounter."
You have: "salmon."

assert(‘microwave' is 'opened')

grab(salmon) open
(microwave)

putin(salmon,
microwave)

close
(microwave)

walk(kitchen) find(salmon) find
(microwave)

switchon
(microwave)

switchoff
(microwave)

open
(microwave)

close
(microwave)

grab(salmon)

http://progprompt.github.io

